WEKO3
-
RootNode
アイテム
Detecting Seismic Electric Signals by LVQ Based Clustering
https://ipsj.ixsq.nii.ac.jp/records/33481
https://ipsj.ixsq.nii.ac.jp/records/334812a008a2f-46bc-48dc-add9-2987b4d268c7
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2001 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2001-06-26 | |||||||
タイトル | ||||||||
タイトル | Detecting Seismic Electric Signals by LVQ Based Clustering | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Detecting Seismic Electric Signals by LVQ Based Clustering | |||||||
言語 | ||||||||
言語 | jpn | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Nara Women's University | ||||||||
著者所属 | ||||||||
Nara Women's University | ||||||||
著者所属 | ||||||||
Nara Women's University | ||||||||
著者所属 | ||||||||
Earthquake Prediction Research Center Tokai University | ||||||||
著者所属 | ||||||||
Nara Women's University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Nara Women's University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Nara Women's University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Nara Women's University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Earthquake Prediction Research Center, Tokai University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Nara Women's University | ||||||||
著者名 |
Kyoko, Fukuda
Mika, Koganeyama
Hayaru, Shouno
Toshiyasu, Nagao
Kazuki, Joe
× Kyoko, Fukuda Mika, Koganeyama Hayaru, Shouno Toshiyasu, Nagao Kazuki, Joe
|
|||||||
著者名(英) |
Kyoko, Fukuda
Mika, Koganeyama
Hayaru, Shouno
Toshiyasu, Nagao
Kazuki, Joe
× Kyoko, Fukuda Mika, Koganeyama Hayaru, Shouno Toshiyasu, Nagao Kazuki, Joe
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Aiming at short-term prediction of earthquakes we have proposed the use of neural networks for analyzing telluric current data observed by the VAN method. We have already tried a telluric current data analysis method with Learning Vector Quantization. In this paper we will show preliminary experimental results for categorization of telluric current data by its frequency for the Izu islands earthquakes in Japan. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Aiming at short-term prediction of earthquakes, we have proposed the use of neural networks for analyzing telluric current data observed by the VAN method. We have already tried a telluric current data analysis method with Learning Vector Quantization. In this paper, we will show preliminary experimental results for categorization of telluric current data by its frequency for the Izu islands earthquakes in Japan. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN10505667 | |||||||
書誌情報 |
情報処理学会研究報告数理モデル化と問題解決(MPS) 巻 2001, 号 63(2001-MPS-035), p. 25-28, 発行日 2001-06-26 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |