WEKO3
-
RootNode
アイテム
推薦システムのための状態遷移確率の構造を未知としたマルコフ決定過程
https://ipsj.ixsq.nii.ac.jp/records/91267
https://ipsj.ixsq.nii.ac.jp/records/912673c0406e8-1e29-4e9f-a09c-cf750f7b3455
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2013 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Trans(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2013-03-12 | |||||||
タイトル | ||||||||
タイトル | 推薦システムのための状態遷移確率の構造を未知としたマルコフ決定過程 | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Variable Order Transition Probability Markov Decision Process for the Recommendation System | |||||||
言語 | ||||||||
言語 | jpn | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | [オリジナル論文] 推薦問題,マルコフ決定過程,ベイズ決定理論,強化学習 | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
早稲田大学理工学術院基幹理工学研究科/現在,株式会社NTTデータ | ||||||||
著者所属 | ||||||||
北見工業大学 | ||||||||
著者所属 | ||||||||
早稲田大学理工学術院基幹理工学研究科 | ||||||||
著者所属 | ||||||||
早稲田大学理工学術院基幹理工学研究科 | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science and Engineering, Waseda University / Presently with NTT DATA CORPORATION | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Kitami Institute of Technology | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science and Engineering, Waseda University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science and Engineering, Waseda University | ||||||||
著者名 |
桑田, 修平
前田, 康成
松嶋, 敏泰
平澤, 茂一
× 桑田, 修平 前田, 康成 松嶋, 敏泰 平澤, 茂一
|
|||||||
著者名(英) |
Shuhei, Kuwata
Yasunari, Maeda
Toshiyasu, Matsushima
Shigeichi, Hirasawa
× Shuhei, Kuwata Yasunari, Maeda Toshiyasu, Matsushima Shigeichi, Hirasawa
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | 推薦問題を扱うためのより一般化されたマルコフ決定過程モデルに対して,ベイズ基準のもとで最適な推薦ルールを履歴データから求める方法を提案する.推薦問題に関する研究において,これまで,ある商品を推薦した結果どの商品が買われたのか(推薦結果)や,さらには,一定期間内に行った複数の推薦結果が考慮されることはほとんどなかった.これに対して,マルコフ決定過程モデルを用いることで上記2点を初めて考慮した手法が提案されている.提案法は,その従来研究のモデルを一般化した点に新規性がある.また,もう1つの新規性として,推薦ルールを求めるためのプロセスを統計的決定問題として厳密に定式化した点がある.従来のモデルを一般化することで,マルコフ決定過程モデルを用いた推薦手法の適用領域が拡大され,かつ,推薦する目的に対して最適な推薦が行えるようになった.人工データを用いた評価実験により,提案する推薦手法の有効性を確認した. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | In this paper, we propose a general markov decision process model for the recommendation system. Furthermore, by using historical data, we derive the optimal recommendation lists from the proposed model based on bayesian decision theory. In the recommendation research area, there were little studies that considered both the purchased items and the past recommended items within a given period. In these circumstances, markov decision process based recommend method that can take these two things into account has been proposed. Our method also uses both things as with the previous method. Here, the unique thing about this paper is not only that we generalize the existing model, but also that we formulate the process to get the recommendation lists as the statistical decision problem. As a result, we can obtain the most suitable recommendation lists with respect to the purpose of the recommendation for a wide variety of recommendation scene. By using artificial data, we show the experimental results that our method can obtain more rewards than the conventional method gets. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA11464803 | |||||||
書誌情報 |
情報処理学会論文誌数理モデル化と応用(TOM) 巻 6, 号 1, p. 20-30, 発行日 2013-03-12 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-7780 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |