Item type |
SIG Technical Reports(1) |
公開日 |
2019-07-17 |
タイトル |
|
|
タイトル |
Toward Training a Large 3D Cosmological CNN with Hybrid Parallelization |
タイトル |
|
|
言語 |
en |
|
タイトル |
Toward Training a Large 3D Cosmological CNN with Hybrid Parallelization |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
機械学習 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Tokyo Institute of Technology/Lawrence Livermore National Laboratory |
著者所属 |
|
|
|
Lawrence Livermore National Laboratory |
著者所属 |
|
|
|
University of Illinois at Urbana-Champaign/Lawrence Livermore National Laboratory |
著者所属 |
|
|
|
Lawrence Berkeley National Laboratory |
著者所属 |
|
|
|
Lawrence Berkeley National Laboratory |
著者所属 |
|
|
|
RIKEN Center for Computational Science/Tokyo Institute of Technology |
著者所属 |
|
|
|
University of Illinois at Urbana-Champaign |
著者所属 |
|
|
|
Lawrence Berkeley National Laboratory |
著者所属 |
|
|
|
Lawrence Livermore National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
Tokyo Institute of Technology / Lawrence Livermore National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
Lawrence Livermore National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
University of Illinois at Urbana-Champaign / Lawrence Livermore National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
Lawrence Berkeley National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
Lawrence Berkeley National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
RIKEN Center for Computational Science / Tokyo Institute of Technology |
著者所属(英) |
|
|
|
en |
|
|
University of Illinois at Urbana-Champaign |
著者所属(英) |
|
|
|
en |
|
|
Lawrence Berkeley National Laboratory |
著者所属(英) |
|
|
|
en |
|
|
Lawrence Livermore National Laboratory |
著者名 |
Yosuke, Oyama
Naoya, Maruyama
Nikoli, Dryden
Peter, Harrington
Jan, Balewski
Satoshi, Matsuoka
Marc, Snir
Peter, Nugent
Brian, Van Essen
|
著者名(英) |
Yosuke, Oyama
Naoya, Maruyama
Nikoli, Dryden
Peter, Harrington
Jan, Balewski
Satoshi, Matsuoka
Marc, Snir
Peter, Nugent
Brian, Van Essen
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
We report our preliminary work on large-scale training of a 3D convolutional neural network model for cosmological analyses of dark matter distributions. Previous work showed promising results for predicting cosmological parameters using CNNs trained on a large-scale parallel computing platform. However, due to its weak scaling nature, there exists a trade-off of training performance and prediction accuracy. This paper extends the existing work for better prediction accuracy and performance by exploiting finer-grained parallelism in distributed convolutions. We show significant improvements using the latest complex cosmological dataset with a huge model that was previously unfeasible due to its memory pressure. We achieve 1.42 PFlop/s on a single training task with a mini-batch size of 128 by using 512 Tesla V100 GPUs. Our results imply that the state-of-the-art deep learning case study can be further advanced with HPC-based algorithms. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
We report our preliminary work on large-scale training of a 3D convolutional neural network model for cosmological analyses of dark matter distributions. Previous work showed promising results for predicting cosmological parameters using CNNs trained on a large-scale parallel computing platform. However, due to its weak scaling nature, there exists a trade-off of training performance and prediction accuracy. This paper extends the existing work for better prediction accuracy and performance by exploiting finer-grained parallelism in distributed convolutions. We show significant improvements using the latest complex cosmological dataset with a huge model that was previously unfeasible due to its memory pressure. We achieve 1.42 PFlop/s on a single training task with a mini-batch size of 128 by using 512 Tesla V100 GPUs. Our results imply that the state-of-the-art deep learning case study can be further advanced with HPC-based algorithms. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10463942 |
書誌情報 |
研究報告ハイパフォーマンスコンピューティング(HPC)
巻 2019-HPC-170,
号 8,
p. 1-8,
発行日 2019-07-17
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8841 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |